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Abstract

Deep neural networks have far reaching applica-
tion and have far complex architectures. How-
ever, in past, it has been shown that Deep neural
networks which are performing much better in
terms of generalization are flawed when a small
amount of perturbation is introduced in an image.
This perturbed images are known as adversarial
inputs as they break functionality of neural net-
works. Much research has been devoted to the
study of attacks and defences against adversarial
inputs. However, adversarial inputs to deep neu-
ral networks still remains a viable threat. In this
project, we review a few methods for generating
adversarial inputs for deep neural networks. We
also experiment two probable defences against
adversarial attacks. The experimental results ob-
tained from these experiments give us a few more
insights regarding how adversarial inputs work.

1. Introduction

Deep neural networks have complex architecture which
makes it difficult to analyse it theoretically but as it has
been shown by previous attempts (Krizhevsky et al., 2017;
Szegedy et al., 2014; He et al., 2015) that they are far bet-
ter at modelling tasks such as object recognition, image
recognition, speech processing and natural language pro-
cessing. It has also been shown that they are highly prone
to small input perturbations (Szegedy et al., 2013; Goodfel-
low et al., 2014; Moosavi-Dezfooli et al., 2015). Previous
research has also proposed viable defences (Papernot et al.,
2015b; Madry et al., 2017; Sharma & Chen, 2017) and there
have been attacks against those defences (Carlini & Wagner,
2016; Sharma & Chen, 2017; Carlini & Wagner, 2017).

In this project, we try to come up with new defences against
adversarial attack and in the process discover an intuition
regarding how adversarial attacks work.

Our first proposed defence is a Teacher Student framework
where a set of teacher models are used to make a student
model robust against adversaries. Here Teacher performs
job of adversarial knowledge transfer. This approach is
similar to the defence proposed in (Krizhevsky et al., 2017).
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However, in (Papernot et al., 2015b), no adversarial training
was used which is different from what we have done.

Our second proposed defence is to randomize the subset
of pixels of input images and evaluate robustness of such
neural network. We also use concept of a teacher model
here, however it is different from how teachers work in 1st
framework. Here, teacher model isn’t used to provide any
sort of adversarial training to the student model.

All of our experiments are performed on DNN architecture
that was used in (Madry et al., 2017) and training data is
MNIST (LeCun & Cortes, 2010). Here, we are considering
BlackBox adversaries which has access to training data
and DNN architecture but do not have access to the trained
model used by user.

Both of our experiments are implemented using TensorFlow
(Abadi et al., 2015). For the purpose of generating adver-
sarial inputs we are utilizing cleverhans (Papernot et al.,
2018) which implements a broad class of attacks with many
tunable features for each attack.

The outline of report is as follows: Section 2 gives a back-
ground on adversarial attacks. Section 3 describes related
work in defences against neural network. Section 4 details
the two experiments we have done and section 5 contains
their experiment evaluations. Section 6 proposes future
work that can be done based upon outcomes of our experi-
ments and section 7 concludes the report.

2. Adversarial attacks

In this section we describe a few of the adversarial attacks
that we have used in our experiments. Note that this list
is not a complete list of adversarial attacks. It is for the
purpose of review of attacks used in our experiment.

2.1. L-BFGS

This attack is the very first attack against DNNs. This
was introduced in (Szegedy et al., 2013). This attack tries
to produce adversarial input by performing a constraint
optimization as below:
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minimize ||z — 2|3
such that C(z') =1
z’' €[0,1]

C in above equation represents the classifier function. This
above problem is difficult to solve as it requires =’ without
any instructions on how to find such value. However, the
problem is solved using an alternative formulation as shown
in (Szegedy et al., 2013). The alternative formulation is as
shown below:

c- ||z — 2|3 + losspi (')
x’ €10,1]P

minimize
such that

losspi(x’) is loss of classifier for input 2’ in direction
of class I. Hence, the formulation is trying to solve the
problem by minimizing the cost of input 2’ in direction
of class [ and at the same time minimuizing Lo distance
between actual input and adversarial input.

Generating adversarial inputs using this attack is heavy be-
cause of the L-BFGS method. Hence, we have not used
this in our experiments. This is a targeted attack in which
adversarial input is generated so that DNN misclassifies the
adversarial image into pre-specified target class.

2.2. Fast Gradient Sign Method

Fast Gradient Sign Method or FGSM was first proposed
in (Goodfellow et al., 2014). This attack is also a targeted
attack. The formulation of FGSM and L-BFGS is similar.
However FGSM tries to find adversarial input using first
order gradient optimization methods which are also used
to train neural network. This specific feature of this attack
makes it quite feasible and quick to generate adversarial
inputs. The attack tries to find adversarial input =’ from
actual input x and target class y # C(z) by following
procedure as below where J is the classifier loss function:

n=e¢- SZg’I’L(J(X, Y, 9)
2 =x +eta

FGSM attack uses ||/ || norm to measure distance between
adversarial input and actual input. Hence, adversary’s
powers are limited by ensuring that the maximum pertur-
bation that can be introduced is limited to a predefined e.
Sometimes adversarial images created by FGSM are highly
perturbed and they belong in the region of input space
which are actually far away from the input space. Due to
this reason, perturbation done by FGSM turn out to be quite
high as compared to other methods. Iterative sign method
is extension of FGSM by applying it iteratively until an
adversarial image that classifies as target class y is obtained.

2.3. DeepFool

DeepFool is an untargeted attack that was proposed in
(Moosavi-Dezfooli et al., 2015). It is an non-targeted attack
in that it doesn’t try to create adversarial input that causes
classifier to give a certain prediction in the output. On the
other hand, it tries to modify the adversarial input such that
classifier classifies the input as instance of some other class
than its true class.

On the high level, idea of DeepFool is simple. Deep neural
networks can be thought of as modelling hyperplanes
in high dimensions, where each hyperplanes forms a
boundary that separates instance of one class from the
rest of the classes. DeepFool simply tries to move input
in the direction of the hyperplane that is closest to input
but the hyperplane separates inputs from class other than
the true class of input. Suppose that, true class of an
input x is k, then DeepFool looks at all the hyperplane
boundaries nearby x and picks a boundary that corresponds
to some class other than k£ and is closest to . Due
to such formulation of attack DeepFool creates adver-
sarial images which have very small amount of perturbation.

2.4. JSMA

JSMA is Jacobian Saliency Map based Attack which was
first introduced in (Papernot et al., 2015a). JSMA is a tar-
geted attack like L-BFGS and FGSM. JSMA attack prepares
a Saliency map for input features and tries to determine
which how input features have effect classifier’s decision of
particular input. This is determined by differentiating the
classifier function C in forward direction. Once derivative
of classifier’s output w.r.t. input features is determined, we
can look for features which have high value derivative. As
value of derivative tells us what will be the effect on the clas-
sifier function C if we modify corresponding input feature
by some amount.

A slightly modified version of this heuristic is applied in
JSMA to pick an input feature which leads to larger mod-
ification in output of classifier. This procedure is applied
iteratively until the input has been classified into desired
class. JSMA keeps track of unmodified input features which
is a set containing potential features which can be modified.
At each iteration it removes currently selected features from
this set and goes to next iteration until input is misclassified
as desired target class.

JSMA also has other input parameters such as how
much distortion should be done in input feature and how
many input features can be modified at most to generate
adversarial input. The number of features modified by
JSMA corresponds to robustness of neural network. That is,
if more features need to be modified then neural network is
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more robust. The robustness parameter are discussed later
in section 5.

2.5. Carlini Wagner

Carlini and Wagner proposed a set of attacks in their paper
(Carlini & Wagner, 2016). It is one of the strongest attack
known till date. The authors proposed 3 different attacks,
each differing in the distance metric used to compare adver-
sarial image and actual image. The L5 attack proposed by
Carlini and Wagner is used in our experiments. Given an
input image x and target label ¢t # C(x) the attack tries to
produce adversarial image w as below:

minimize

where f(x) = max(max{Z(z);,i # t} — Z(x)¢, —k)
Here Z(x) is the output of classifier’s final layer on input z
before applying the softmax function. These values are also
called as logits. The loss function can be seen as modifying
the input w such that the difference between the target class
t and any other class ¢ # ¢ is at least k.

The authors also proposed L attack method which is very
similar to how JSMA works. However, this method also
iteratively rejects input features which would not lead to any
change in classifier output. At each iteration this method
uses the Lo method described above to figure out which in-
put features do not lead to any significant change in classifier
output.

Third method proposed by authors is L, method, which
is similar to how Lo method works. The only difference is
that it tries to minimize L., norm between adversarial input
and actual input. The method is formulated as below:
minimize c¢- f(z+0)+ > ,(6 —7)T

Here et = max(e, 0). The second term considers sum of all
values which are greater than some threshold 7 as the norm
being minimized rather than just considering the maximum
value of §. The reason is, sometimes by considering only
maximum value the optimization function gets stuck in
plateau region where even if second largest value is not
much different from largest value, the optimizer function
ignores the second largest value. This attack also works
iteratively and value of 7 is updated after each iteration if
none of the values in ¢ are more than 7.

The value of the c used in the two attacks described above is
a hyper parameter and it must be selected carefully to obtain
good adversarial examples. Sometimes a binary search is
applied and attack is executed multiple times to reduce the
distance between adversarial image and actual image by

finding a good value of c.

2.6. Projected Gradient Decent

Projected Gradient Decent or PGD is a targeted attack which
was used in (Madry et al., 2017) to make DNN robust against
adversarial attacks. PGD attack is similar to FGSM attack,
such that it also uses the classifier loss function to find out
direction in which input should be changed so that output
class given by classifier is desired target class ¢. However,
how this input is changed is slightly different. PGD is also
based on || Lo || norm metric.

Just like FGSM, PGD also finds a direction to change input,
however in PGD the input is projected back into the || L]
radius ball only when it goes out of the ball. In contrast,

||%(tcmh(w) +1)—z|3 +c- f(%(tanh(w) + 15GSM directly multiplies the sign of gradient with the max-

imum value of e. Projecting input back into || L[| radius
ball is done by normalizing the input and then multiplying
it with e. Here € is the maximum value of perturbation that
can be done. Hence, € determines the radius of || L. || ball.

2.7. Elastic-Net Attacks

Elastic-Net Attacks was first introduced in (Chen et al.,
2017). This attack was also used to successfully attack the
defence developed in (Madry et al., 2017). The key idea of
this attack is to combine the L and Lo distance metric into
single loss function so as to obtain better adversarial images.
Given an input x and target class ¢t # C(x) the goal of this
attack is to find adversarial image 2’ by solving:

c- f(a') + Blla’ — 2|l + ||2" — |3
o € [0, 17

minimize
subject to

Here [ is the regularization parameter and f is same as the
one described in Carlini Wagner attack. By changing value
of 3 one can regularize the adversarial image generation
process. If the value of 3 = 0 then the attack is same as the
Carlini Wagner attack.

3. Related work

This section describes previous defences against adversarial
attacks and attacks against those defences. It also serves as
our intuition behind the experiments we conducted.

3.1. Defensive distillation

Defensive distillation is one of the very first proposed de-
fence against adversarial images. It was first proposed by
(Papernot et al., 2015b). Defensive distillation tries to make
neural network robust by transferring knowledge from one
neural network to other. Key feature of this defence was
that it does not rely on any kind of adversarial training.

Transferring knowledge from one DNN to other for reducing
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the computational complexity of a DNN was first proposed
in (Hinton et al., 2015). There the idea was applied to trans-
fer knowledge learnt by a big neural network into a smaller
network so that predictions can be made faster. Defensive
distillation uses the same approach at its core but not to
reduce computational complexity but to make DNN robust
against adversarial inputs.

The core idea behind Defensive distillation uses two neural
network having same architecture. The first neural network
is initially trained on the training data until sufficient accu-
racy is obtained. Then, outputs from first DNN are extracted
for each input in training data. The second neural network
is trained on the output class probabilities obtained from
first neural network. Hence, training data for second DNN
contains the actual outputs rather than one hot vectors from
original training data.

Defensive distillation also uses a temperature parameter T
in calculation of softmax function. The formula used for
softmax is shown below. The value of temperature T was
kept by author.

eZt/T

N
E eZt/T
n=1

The intuition behind this approach is that, using the class
probability vector as training output rather than one hot vec-
tors helps in smoothing the probability function modelled
by DNN and hence improves robustness of DNN in the
input region space close to actual inputs. Moreover, using
high value of T prevents the first model from over fitting the
output probabilities so that the output probability vectors
does not become close to one hot vector. Also, at the time of
evaluation and adversarial input generation the temperature
was set to 1.

Ft(.f) =

However, later it was shown (by (Carlini & Wagner, 2016))
that robustness achieved by Defensive distillation is because
of absence of methods for crafting adversarial examples
efficiently. The use of high temperature causes the outputs
to be smoothed out but when it is reset to 1 during evaluation
and adversarial input generation causes the outputs get very
close to one hot vectors. Because of this, the methods
used for generating adversarial examples in (Papernot et al.,
2015b) were useless because the target class probability
becomes nearly 0 and floating point numbers are unable to
capture to such precision. Hence, the attack methods were
stuck in plateau region of the loss function.

Authors of (Carlini & Wagner, 2016) also demonstrated that
if adversarial inputs were to be crafted by keeping value of
temperature same as the training time then it is possible to
generate adversarial examples. Hence, authors in (Carlini
& Wagner, 2016) proposed a new approach for generating
adversarial images by considering the value of logits rather

than probabilities.

The Teacher Student framework that we experimented is in-
spired by this approach. The original Defensive distillation
didn’t use adversarial training, hence, we experimented to
see what happens if we actually used adversarial training.

3.2. Madry defence

Madry defence was first proposed in (Madry et al., 2017).
The Madry defence is models adversarial input crafting and
robustness as an optimization problem which is formulated
as below. Given parameter € of network and loss function
L, Dataset D, we try to find parameter 6 as below:

p(0)
p(e) = E(m,y)ND [max6 L(07 T+ 6) y)]

ming
where,

The inner maximization problem allows to find out the max-
imum loss by figuring out radius § in L, radius ball such
that  + J and x has same output class y. The outer mini-
mization problem finds out the parameter 6 such that p(6)
is minimized. Hence, the largest radius § being minimized.

The authors of the paper attempt to solve above problem
using first order optimization methods. They use adversarial
attack methods such as PGD to solve inner maximization
problem. Multiple such attacks can be used since the larger
the sample size the more accurate solution to inner maxi-
mization problem will be obtained. Once inner problem is
solved, outer minimization problem is solved which is same
as training the DNN on the adversarial images generated by
inner maximization problem and hence changing parame-
ters such that outer cost is minimized. Training network in
such manner causes network to be robust in the L, radius
ball because loss for all adversarial perturbation is small in
such region as result of training.

One important aspect of this defence is the way the authors
modelled the perceptual similarity between two images.
The most widely used notion for perceptual similarity is
the L., distance between adversarial image and actual im-
age. Hence, the authors limited the adversary in terms of
how much distortion an adversary can introduce in terms of
|| Loo || norm. However authors in (Sharma & Chen, 2017)
demonstrated that L., norm is not an ideal way to mea-
sure perceptual similarity between images as the adversarial
inputs generated by EAD attack which uses both L; and
L5 norms are also perceptually similar. Moreover, the au-
thors were able to attack the Madry defence successfully by
generating adversarial images using EAD attack.

3.3. MagNet

MagNet defence against adversarial neural network was first
proposed in (Meng & Chen, 2017). MagNet used concept of
detection and reformation of classifier input before running
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the actual classifier on the predicted input. The key idea
used in MagNet was the use of detection method that was
independent of the underlying classifier model.

MagNet used an auto-encoder network on the training
dataset for detection of adversarial input. The key idea
was that if the output of the classifier and input of the classi-
fier differ significantly then there is high chance that input
had adversarial perturbation. That is, if reconstruction error
is small then there is high chance that input actually belongs
to the input dataset. However this method fails in detecting
adversarial inputs for which reconstruction error is not that
high. Thus authors use the output probabilities given by
the underlying classifier and measure the Jensen-Shannon
divergence between C'(x) and C'(ae(x)) where ae(z) is out-
put obtained from auto-encoder. Note that this detection is
now dependent on target classifier, however, it still does not
need to extract any special knowledge from target classifier
during training.

MagNet also used a reformer network which reconstructs
the adversarial inputs and projects it back into the input
space before applying the target classifier on input. This
reformer network also uses auto-encoder and it is trained on
adversarial examples obtained from target classifier.

The authors demonstrated that their framework is robust
against adversarial attacks. They also utilised an ensemble
of detectors to evade adversarial attacks that are successful
only on one specific detector. However, authors of (Carlini
& Wagner, 2017) later shown that it is possible to break
the defence of detectors in MagNet by using an ensemble
attack on larger set of detector ensembles that adversary
trains independently. This allows an adversary to generate
adversarial inputs which have high probability of success
against ensemble used by MagNet.

4. Proposed approach

This section details our experiments and models.

4.1. Teacher student framework

Teacher student model is similar to the one that was used
in defensive distillation. It tries to combine an ensemble of
teachers with a student and uses knowledge extraction meth-
ods to see if it improves robustness of DNN. Architecture
of all models are same.

First we train a set of teacher models. Each teacher model is
trained on same dataset. Student is also trained on the same
dataset separately. We call this phase natural training where
all models are trained on original dataset consisting of only
actual inputs.

Next phase is adversarial training, here we train teachers
by generating adversarial inputs on each teacher model sep-

arately. Each teacher model utilizes different attack. The
attacks that we used in this phase are Madry Attack, EAD,
FGSM, Carlini and Wagner Lo variant, DeepFool.

Teachers and students are trained on adversarial inputs on
sequential manner. Initially, we extract a set of adversarial
inputs from all teacher models, then we train student on
these adversarial examples. We don’t use one hot vector but
we use probability vectors of actual image corresponding
to adversarial image, which we extract from teachers mod-
els. Next, teachers are trained on same adversarial inputs.
However, training of teachers is limited to the adversarial
examples extracted from that teacher model.

This is done multiple time. At the end of every 3 iterations,
we retrain all models on original dataset. At the end of each
iteration we test adversarial robustness of both teachers and
student.

4.2. Random permutation model

In this experiment, we again use concept of knowledge trans-
fer among models but in slightly different manner. Here, we
first train a single teacher model, which is trained on actual
dataset.

We use a key matrix which is used to permute the pixels in
the original images. We consider different settings where
we permute different subsets of pixels. Here, which pixels
should be permuted are chosen uniformly randomly. Once
we have our key, we permute inputs in our training dataset
using this key.

We, then, train another model, called RandPerm, model
on this permuted images. Here architecture of student and
teacher is same. We train RandPerm model on feature vector
layer rather than output layer. Feature vector layer is the
layer just before inputs. We extract this feature vectors for
original non-permuted images from teacher model and train
student upto this layer.

During the time of prediction, we use the same weights used
by teacher model for generating output from feature vector
layer. Training on feature vector layer is done because we
want DNN to have predictable structure when inputs are
permuted. This way we can be sure that the outputs gen-
erated at feature vector layer by RandPerm model matches
the output generated by teacher model. This incorporates a
reconstruction behaviour.

4.3. Attacks

In both of our experiments, we have only considered Black-
Box adversaries which work upon transferability of neural
networks. Our threat model assumes that adversary knows
the architecture and training dataset. Our break model is
situation where adversary has succeeded in transferring a
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significant number of inputs.

We evaluate our models on both target and non-targeted
attacks. Recent research (Liu et al., 2016) has shown that
getting high transferability in targeted attack is a computa-
tionally hard task. We have also confirmed this hypothesis
during our evaluation. However, we also noticed that trans-
ferability is very high when non-targeted attacks are being
used.

5. Evaluation

This section contains evaluation of our experiments and
various evaluation parameters that we have considered in
our experiment.

5.1. Experiment setting and Evaluation Metrics

All of our experiments are done using MNIST (LeCun &
Cortes, 2010) dataset. We have used the DNN model used
in (Madry et al., 2017) as it is. We have used various attacks
in our experiments. It is not possible to enumerate all param-
eters of all attacks, however following are key parameters
that we have used in our experiment. In L, attack we allow
maximum distortion of 1.0 in both Madry and FGSM attack.
For EAD and Carlini and Wagner attack we have used 2
binary search steps and maximum iterations of 100.

We have used several parameters to measure robustness of
out DNNs.

Robustness:- Robustness is usually measured mean as
amount of perturbation required to generate an adversar-
ial input from original image. The distortion is generally
measured as distance between original image and adversar-
ial image. Different attacks use different distance metric
and so we have used several distance metric for measuring
robustness.

For Carlini Wagner and EAD attack we use following
formulation:

|lz—a'| 13

p(z) = Exnp Fpizels

For Madry attck, FGSM we use following formulation:

_ llz—a"||o
p(z) = Eznp “Fpizels

Along with robustness we also measure successful attack

perturbation which is same as robustness but average is

taken only over those inputs which are successful in adver-

sarial attack.

Sometimes we also refer to adversarial attack success as
robustness. We have explicitly mentioned when we mean it
as accuracy and when it is used to refer mean perturbation.

5.2. Teacher student framework

We trained teacher student model in targeted as well as
non-targeted setting as described in experiment section. We
trained all models on MNIST dataset and all the models
had same architecture. We evaluated our models after every
iteration.

All models are trained for 5 epochs initially on original
training dataset. Adversarial training is done for 3 epochs
only. Retraining on original dataset is done for only 1 epoch.

We observed that most of the time targeted attacks weren’t
able to transfer across the models. We found that combined
average of transferability 10% from all of our teacher mod-
els. This is consistent with the observations mentioned in
(Liu et al., 2016). Hence, we figured that training students
by extracting knowledge from targeted setting is unfruitful.
Hence, we next evaluated our framework on non-targeted
attacks.

On non-targeted attacks we found transferability of 35%
on an average. This scenario was better than targeted as
some knowledge was being extracted from teachers and
being transferred to students. However, we found that even
after running the framework for 5 iterations student models
robustness didn’t improve much significantly.
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Figure 1. Figure (a): Attack accuracy of student model in targeted
setting. Figure (b): Attack accuracy of student model in non-
targeted setting.

From the graph shown above it is clear that even though stu-
dent does improve a little, its not much significant. However,
it is completely possible that student’s robustness improves
as teachers become better and better with their own training
on adversarial inputs. However, this would require much
larger training iterations for which we didn’t have adequate
resources.

However, even after that, it is quite possible that student will
be vulnerable against one or other attack. This is because
recently a research (He et al., 2017) has shown that it is
quite possible to break an ensemble of models by crafting
adversarial inputs on ensemble of models and performing
black box attack. Hence, intuitively it makes sense that
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if teacher models are vulnerable then student would also
be vulnerable because student only trains on knowledge
extracted from teachers.
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Figure 2. Figure (a): Attack accuracy on Madry attack model. Fig-
ure (b): Attack accuracy on FGSM attack model.

From our experiments we also noticed that the adversarial
attack accuracy decreased only for Madry attack and FGSM
attack. That is, teachers who were using Madry and FGSM
training as their attack method were the only ones becoming
robust. Their graph of adversarial attack robustness is shown
above.
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Figure 3. Mean perturbation required for adversarial attack

The graph of mean perturbation is shown above. From
this graph we conclude that even though adversarial attack
accuracy is not changing much the mean distortion required
for attack is indeed increasing. Hence, it seems that if we
perform training for more iteration attack accuracy is likely
to decrease by increasing robustness. Note that here we
have used L, distance for measuring mean perturbation.

Hence, we conclude our teacher student experiment as in-
conclusive because it seems that student will become more
robust as teachers become robust over the time.

5.3. Random permutation model

Random permutation model is model for which we use
randomly shuffled input images as training data. Here, also,
we have used MNIST dataset and architecture of both our
models have been kept same. We trained all models for 5
epochs only.

The attack that we utilised here is Madry attack proposed in
(Madry et al., 2017). We found it to be most effective against
for a black box adversary because it had very high trans-
ferability in both targeted and non-targeted setting. Here
we have considered only black box attacks. The reason for
this is that the key used for random permutation is supposed
to be kept secret and adversary doesn’t have a way to ob-
tain the key used for training a particular model. We also
considered Carlini and Wagner L, attack proposed in (Car-
lini & Wagner, 2016), however we observed that crafting
transferable adversarial inputs is computationally costly and
requires carefully tuned hyper-parameters of attack even in
non-targeted adversarial setting.

We performed this experiment in 3 different settings. First
we modifies only a subset of input pixels, 50 and 100 respec-
tively. In the last trial we modified entire image and looked
at the results. Again we ran experiment in both targeted and
non-targeted setting. To be able to compare improvements
by RandPerm model, we train a third model called as natural
model which is also trained on same dataset. This model
represents effectiveness of attack against models which uses
same training data as black box adversary. We craft adver-
sarial examples from BB (black box) model and apply it to
all three types of models that we have considered here. We
also apply same inputs to natural model.

Table 1. Non-targeted adversarial attack success on different Rand-
Perm models

Model Test accuracy | Attack success
BB model 98.4 100
Natural model - 97.8
50-model 98.7 97.6
100-model 98.9 97.5
Full-model 95.8 82

First we did experiment in non-targeted setting. Above table
shows that when we use only a 100 or 50 pixels and shuffle
them, it doesn’t really decrease attack accuracy. However,
when complete shuffling of input is done, the adversarial
attack success indeed decreases, but still not as significant
as we would want it to be. However, test accuracy of 95.8%
on RandPerm model which uses full permutation does show
that neural network is able to find patterns even when it
doesn’t make sense to a human.

Next we did experiment in targeted setting. Above table
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Table 2. Targeted adversarial attack success on different RandPerm

models
Model Test accuracy | Attack success
BB model 99 100
Natural model - 43.7
50-model 98.9 40
100-model 99 42
Full-model 95.5 18

shows the adversarial robustness of different RandPerm
models. Our results in above table shows that randomizing
model input clearly decreases success of adversarial attacks.
However change here is still not significant as we would
want it to be. Moreover, we have no idea on what kind of
patterns are learnt by DNN in full permutation setting of
experiment. Note that by modifying 50 or 100 pixels we
don’t see any effect on adversarial attack success.

5.3.1. ARE TARGETED ATTACKS BEING PREVENTED?

Since only 43.7% of targeted attacks are transferring across
black box model to natural model, we believe that the data
is not sufficient to answer the question regarding whether
targeted attacks are truly being mitigated.

However, non-targeted attacks are highly transferable.
Therefore we generated non-targeted attack adversarial im-
ages and treated them as if they were targeted attack. This
means that once we obtained non-targeted attack images we
obtained their outputs on Black Box model and used those
outputs as target class to which our model should classify
for adversarial success. This can simply be obtained by
comparing output of BB model against output of natural
model and RandPerm model.

We performed this evaluation for full permutation model.
We found that 74% of the images had same label for BB
model and natural model. However this number dropped to
32% for full permutation model. This shows that indeed it
is possible to avert targeted attack using full permutations.
However best we can do seems to be half of the maximum
success attack obtained against the natural model.

Intuitively, it seems that number of input features is the
limiting factor here. Since there are only 784 input features
it is quite possible that all of the input features get modified.
We did not perform this experiment for tasks that require
images to be highly structured and where permuting input
images might make DNN to fail to train.

6. Future work

In future, we could run the teacher student framework model
for large number of iterations and check how student im-

proves as teachers become more and more robust. One more
thing we can do is to generate adversarial inputs on student
and test how many of them transfer back to teachers. Re-
cently there have been many approaches to ensemble attacks
((Carlini & Wagner, 2017), (He et al., 2017)). This could
give us a new way to perform ensemble attack using a single
model.

We could also try and modify the training paradigm used in
teacher student framework and use a paradigm that is similar
to the one proposed in Madry (Madry et al., 2017) and adopt
it for ensemble setting. Other thing that could be done
is to test whether RandPerm model works for other tasks
which identification of complex and hierarchical patterns in
training data.

Recently there have been many proposed attacks on ensem-
ble models (Carlini & Wagner, 2017; He et al., 2017; Liu
et al., 2016). It would be interesting to see their effect on
teacher student framework. Training student model by ex-
tracting adversarial inputs by performing ensemble attack
on teachers can certainly improve learning speed of student.

One could also try to generate the random permutation key
used in RandPerm model according to some distribution
other than the uniform distribution. One approach worth
looking is to generate different permutation keys for each
output class based on the class activation maps (Zhou et al.,
2016) extracted from original teacher model.

7. Conclusion

We conclude our experiments by summarizing our learnings
from them.

1. Teacher student framework shows promise of becom-
ing robust with time. We also learnt that transferability
of targeted attacks is low compared to that of non-
targeted. If we iterate teacher student framework till
all teachers become robust then it seems that student
will also start becoming robust to adversarial attacks.

2. RandPerm model shows that adversarial image genera-
tion does not only depend on dataset and the model but
also on how this data is being fed in model and we can
introduce some randomization in this aspect and hope
to achieve some adversarial robustness. We also see
that we can hypothesize how DNN will behave when
subjected to targeted attack by comparing outcomes on
non-targeted attacks.
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